A spectroscopic study of the temperature induced modifications on ferredoxin folding and iron-sulfur moieties.
نویسندگان
چکیده
Thermal perturbation of the dicluster ferredoxin from Acidianus ambivalens was investigated employing a toolbox of spectroscopic methods. FTIR and visible CD were used for assessing changes of the secondary structure and coarse alterations of the [3Fe4S] and [4Fe4S] cluster moieties, respectively. Fine details of the disassembly of the metal centers were revealed by paramagnetic NMR and resonance Raman spectroscopy. Overall, thermally induced unfolding of AaFd is initiated with the loss of -helical content at relatively low temperatures (T(app)(m) approximately 44 degrees C), followed by the disruption of both iron-sulfur clusters (T(app)(m) approximately 53-60 degrees C). The degradation of the metal centers triggers major structural changes on the protein matrix, including the loss of tertiary contacts (T(app)(m) approximately 58 degrees C) and a change, rather than a significant net loss, of secondary structure (T(app)(m) approximately 60 degrees C). This latter process triggers a secondary structure reorganization that is consistent with the formation of a molten globule state. The combined spectroscopic approach here reported illustrates how changes in the metalloprotein organization are intertwined with disassembly of the iron-sulfur centers, denoting the conformational interplay of the protein backbone with cofactors.
منابع مشابه
Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly.
The biological insertion of iron-sulfur clusters (Fe-S) involves the interaction of (metallo) chaperons with a partly folded target polypeptide. In this respect, the study of nonnative protein conformations in iron-sulfur proteins is relevant for the understanding of the folding process and cofactor assembly. We have investigated the formation of a molten globule state in the [3Fe4S][4Fe4S] fer...
متن کاملOn the nature of the iron sulfur cluster in a deuterated algal ferredoxin.
A protonated and a completely deuterated two-iron algal ferredoxin from Synechococcus lividus have been studied by optical, electron paramagnetic resonance, electron-nuclear double resonance, proton magnetic resonance and Mossbauer spectroscopies; temperature dependent magnetic susceptibility measurements are reported as well. These studies have confirmed the electron localized model of the act...
متن کاملNew stereochemical analogies between iron-sulfur electron transport proteins.
Active sites of Chromatium high potential iron protein (HiPIP) and Pseudomonas Aerogenes ferredoxin can be brought into equivalent orientations by assuming that their Fe4S4Sgamma4 clusters have the effective symmetry of the non-axial molecular point group Cs. Previously undetected analogies between the two proteins emerge as a result of selecting a common orientation in this mammer. Polypeptide...
متن کاملCharacterization of two soluble ferredoxins as distinct from bound iron-sulfur proteins in the photosynthetic bacterium Rhodospirillum rubrum.
In an earlier investigation (Shanmugam, K. T., Buchanan, B. B., and Arnon, D. I. (1972) Biochim. Biophys. Acta 256, 477-486) the extraction of ferredoxin from Rhodospirillum rubrum cells with the aid of a detergent (Triton X-100) and acetone revealed the existence of two types of ferredoxin (I and II) and led to the conclusion that both are membrane-bound. In the present investigation, ferredox...
متن کاملCluster and Fold Stability of E. coli ISC-Type Ferredoxin
Iron-sulfur clusters are essential protein prosthetic groups that provide their redox potential to several different metabolic pathways. Formation of iron-sulfur clusters is assisted by a specialised machine that comprises, among other proteins, a ferredoxin. As a first step to elucidate the precise role of this protein in cluster assembly, we have studied the factors governing the stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 46 37 شماره
صفحات -
تاریخ انتشار 2007